Posted: May 25th, 2022
Information Technology
Customization and Standardization: A View of Cloud and Grid Computing
Sequencing a genome, storing vast video libraries, or utilizing a non-essential application for occasional use are all functions performed within the realm of information technology. Meeting a particular task need was once the challenge of the end user or organization to ascertain their current and future use to guide their technology purchases. In the not so distant past, limitations of hardware or budget constrained the application of technology. Networking information technology proved one solution to sharing resources and boosting capabilities, while at the same time allowing for centralized governance models to facilitate access and protect privileged information.
As the capabilities of technology advance in computational power, storage, and connectivity, new uses emerge to enhance the capabilities of science, business, and individuals. Scalability, the matching of correct resources to a particular need in time, both up and down, has long proved an elusive target for users and organizations. As specialized organizations with robust computing networks and a common interest sought to enhance the capabilities, grid computing emerged to enable pooled resources.
The newest label for large-scale, shared resources is ‘cloud computing.’ References to ‘the cloud’ raise questions of whether this is a unique approach to delivering scalable resources, or merely a breezy marketing label for grid computing. Ian Foster et al. survey this question in a 2008 conference paper entitled, “Cloud Computing and Grid Computing 360-Degree Compared,” (Foster, Zhao, Raicu & Shiyong 2008). Lacking a definite line of demarcation between grid and cloud computing is best characterized by noting the overarching goal of both, “the vision is the same — to reduce the cost of computing, increase reliability, and increase flexibility by transforming computers from something that we buy and operate ourselves to something that is operated by a third party,” (Foster, Zhao, Raicu, & Shiyong, 2008).
This paper provides an exegesis of the survey, by Foster et al., of Grid and Cloud platforms, as well as a focus on the particulars aspects that most concretely differentiate. The method of this paper briefly follows the course of Foster et al. through six areas. Through the business model, architecture, resource management, data models, applications, and security a clearer view of the similarities and differences of the Grid and the Cloud emerge. This paper refrains from long-term predictions of convergence upon a single grid or cloud-computing paradigm, but does note trends that fit with a more general theme of computing as a utility.
Business model
The most visible differentiating characteristic between cloud and grid computing lies with the business model. Foster et al. largely accept that the evolutionary course of information technology is comprised of three main functions: computation, data storage, and connective infrastructure. In his famous article, “IT doesn’t matter,” Nicolas Carr noted that, “the core functions of IT — data storage, data processing, and data transport — have become available and affordable to all,” while arguing that a technology-based business strategy relied upon maintaining proprietary capabilities (Carr, 2003). Foster et al. note an egalitarian business model that integrates Carr’s view in, “a cloud-based business model, a customer will pay the provider on a consumption basis, very much like the utility companies charge for basic utilities such as electricity, gas, and water, and the model relies on economies of scale in order to drive prices down for users and profits up for providers,” (Foster, Zhao, Raicu, & Shiyong, 2008).
In contrast, Foster et al. note that the Grid computing business model, “is project-oriented,” and rationed through a currency of “service units,” (Foster, Zhao, Raicu, & Shiyong, 2008). Grid computing resembles a co-operative, in that joining integrates your node into a larger external network that enables shared use, and creates the experience of a virtual organization, that Foster et al. define as, “a logical entity within which distributed resources can be discovered and shared as if they were from the same organization,” (Foster, Zhao, Raicu, & Shiyong, 2008).
Security & Architecture
While both represent large scale sharing of resources aimed at enabling a dynamic scaling of resources to match needs, a divergence of architecture and accessibility provides another key point of differentiation between the Grid and the Cloud.
If operational continuity is viewed as a security issue, then clearly the Grid retains an edge over the Cloud in the event of service or connection disruptions. Due to the fact that the Grid is comprised of smaller nodes that connect for resource sharing, the node retains core capabilities should an outage to the larger network occur. The cloud also retains the end user, or node, capabilities, however depending upon the type of services employed from the cloud may result in partial or complete disruption if an outage occurs.
A key characteristic of cloud computing is the configuration of services aimed at a very broad user group. The homogenous nature of a cloud operation is noted by capturing economies of scale and that, “the construction and operation of extremely large-scale, commodity-computer data centers at low-cost locations was the key necessary enabler of cloud computing,” (Armbrust, et al., 2010). Mass appeal and scale entails a lower threshold of security and control, since little more than a credit card is necessary to gain access to most cloud computing platforms. Foster et al. note the easy access of the Cloud with, “Note that new users could use Clouds relatively easily and almost instantly, with a credit card and/or email address,” (Foster, Zhao, Raicu, & Shiyong, 2008).
Grid computing is notably targeted at more specialized groups. Organizations heavily reliant upon information technology are most likely to have robust computing capabilities, budgets for specialized applications, and security of data is of the utmost importance. Grid computing may best be characterized as the model adopted by industry leaders and experts that benefit from shared resources, but only amongst their peers. The scientific community is more likely to be found decoding and sequencing genes in a grid configured system.
The cloud-computing model may be best suited for small business, whose computing needs are best served by specialized third parties whose core competency is information technology. A real estate office or mortgage-brokering firm is apt to find cloud services attractive as it outsources the expensive and onerous tasks that are not integral to the business. The counterpoint of this centralized and standardized approach is that security updates and monitoring is more conducive to this type of environment. Organizations that rely upon proprietary information and continuity of service are unlikely to fully embrace cloud services for the foreseeable future, however this merely denotes one area where customization is warranted for particular cases.
Application & Data Models
Foster et al. note various points of divergence amongst the Grid and Cloud amongst applications and data models, however none emerge as key points of differentiation. These areas are noteworthy for their current dissimilarities, but they are not fundamental.
While grid computing is comprised of various organizations and systems patched together, access is gained via, “standard, open, general-purpose protocols and interfaces,” (Foster, What is the Grid? A Three Point Checklist, 2002). The standardization of protocols delivers the added benefit of interoperability across networks, and makes use of, “Grids focused on integrating existing resources with their hardware, operating systems, local resource management, and security infrastructure,” (Foster, Zhao, Raicu, & Shiyong, 2008). The adoption of general-purpose protocols also limits widespread adaptation of newly developed applications. Furthermore, the disparate nature of Grid network nodes imposes bottlenecks on data transferring amongst heterogeneous machines and connectivity.
By contrast, cloud computing is noted for its homogenous product environment that, at present, offers no such similar portability of data as the Grid. Any customization of applications or interface must occur within the confines dictated by the Cloud platform’s centralized control, thus, “Clouds mostly comprise dedicated data centers belonging to the same organization, and within each data center, hardware and software configurations, and supporting platforms are in general more homogeneous as compared with those in Grid environments,” (Foster, Zhao, Raicu, & Shiyong, 2008). The constrained experience may be of no issue to most organizations, but is likely a key limiting factor for others. A key characteristic of the Cloud is the proliferation of data farms that deliver relatively faster access to data, however this remains an open question, as operations scale up, whether a similar bottleneck will be realized.
The issue of cloud inoperability across platforms and application development may be resolved with further development of Cloud “federations,” however it remains that organizations reliant upon adaptability may best be served through the individual node autonomy of a Grid (Yang, Nasser, Surridge, & Middleton, 2012).
Resource Management
The Grid’s most fundamental characteristics are the information and management protocols to allocate and queue resources. The Grid also benefits from a transparency of its accounting system that eludes the Cloud.
However, resource management of peak loads and heavy use within the Cloud’s standardization enables a more fluid introduction of additional hardware with the simple installation of additional servers or data storage. The Grid’s resources are generally expanded as each node upgrades individually, and consequently enhances the overall network. The lack of coordinated resource upgrades is one limitation of the Grid, however the mitigating characteristic of ‘near-supercomputer’ capabilities diminishes this as a long-term concern.
Conclusion
The line between Grid and Cloud computing is likely to become increasingly fuzzy. However, the key point of differentiation likely to endure is the contrast between standardization and customization.
The Grid offers the ability to tap into additional resources in a rationed environment, however superfluous use is unlikely to sap resources. By contrast, Cloud computing offers capabilities to the masses with additional dynamic scaling for even the largest collection of pet photos or streaming videos with the same egalitarian access as the business needing additional storage, applications, or peak use bandwidth. It remains to be seen how closely the Cloud can emulate the capabilities of the Grid in adaptability, computational power, or security as it reaches ever-greater audiences. As the scale of the Cloud itself grows, so will the interest of the hacker community.
A remaining challenge to the Cloud is how confined clients will become to proprietary models. As the Cloud grows, mergers and acquisitions are inevitable, and present another unanswered question as to how seamless integration of different platforms will occur. Regardless, the ease of access and centralized management are enticing for individual users, whose specialties’ and interests lie outside of technology.
Regardless of fundamental differences between the Grid and the Cloud, the commodification of computing capabilities and scale emerges as the only truly enduring trend.
Works Cited
Yang, X., Nasser, B., Surridge, M., & Middleton, S. 2012 ‘A business-oriented Cloud federation model for real-time applications’, Future Generation Computer Systems, 28, 1158-1167.
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., et al. 2010 ‘A View of Cloud Computing’, Communications of the ACM, 52 (4), 50-58.
Carr, N.G. 2003 ‘IT Doesn’t Matter’, EDUCAUSE Review 38, 6, 24-38.
Foster, I. 2002 ‘What is the Grid? A Three Point Checklist’, GRIDtoday, 1 (6), 1-4.
Foster, I., Zhao, Y., Raicu, I., & Shiyong, L. 2008 ‘Cloud Computing and Grid Computing 360-Degree Compared’, Grid Computing Environments Workshop, 2008, (pp. 1-10). Austin.
Are you busy and do not have time to handle your assignment? Are you scared that your paper will not make the grade? Do you have responsibilities that may hinder you from turning in your assignment on time? Are you tired and can barely handle your assignment? Are your grades inconsistent?
Whichever your reason is, it is valid! You can get professional academic help from our service at affordable rates. We have a team of professional academic writers who can handle all your assignments.
Students barely have time to read. We got you! Have your literature essay or book review written without having the hassle of reading the book. You can get your literature paper custom-written for you by our literature specialists.
Do you struggle with finance? No need to torture yourself if finance is not your cup of tea. You can order your finance paper from our academic writing service and get 100% original work from competent finance experts.
Computer science is a tough subject. Fortunately, our computer science experts are up to the match. No need to stress and have sleepless nights. Our academic writers will tackle all your computer science assignments and deliver them on time. Let us handle all your python, java, ruby, JavaScript, php , C+ assignments!
While psychology may be an interesting subject, you may lack sufficient time to handle your assignments. Don’t despair; by using our academic writing service, you can be assured of perfect grades. Moreover, your grades will be consistent.
Engineering is quite a demanding subject. Students face a lot of pressure and barely have enough time to do what they love to do. Our academic writing service got you covered! Our engineering specialists follow the paper instructions and ensure timely delivery of the paper.
In the nursing course, you may have difficulties with literature reviews, annotated bibliographies, critical essays, and other assignments. Our nursing assignment writers will offer you professional nursing paper help at low prices.
Truth be told, sociology papers can be quite exhausting. Our academic writing service relieves you of fatigue, pressure, and stress. You can relax and have peace of mind as our academic writers handle your sociology assignment.
We take pride in having some of the best business writers in the industry. Our business writers have a lot of experience in the field. They are reliable, and you can be assured of a high-grade paper. They are able to handle business papers of any subject, length, deadline, and difficulty!
We boast of having some of the most experienced statistics experts in the industry. Our statistics experts have diverse skills, expertise, and knowledge to handle any kind of assignment. They have access to all kinds of software to get your assignment done.
Writing a law essay may prove to be an insurmountable obstacle, especially when you need to know the peculiarities of the legislative framework. Take advantage of our top-notch law specialists and get superb grades and 100% satisfaction.
We have highlighted some of the most popular subjects we handle above. Those are just a tip of the iceberg. We deal in all academic disciplines since our writers are as diverse. They have been drawn from across all disciplines, and orders are assigned to those writers believed to be the best in the field. In a nutshell, there is no task we cannot handle; all you need to do is place your order with us. As long as your instructions are clear, just trust we shall deliver irrespective of the discipline.
Our essay writers are graduates with bachelor's, masters, Ph.D., and doctorate degrees in various subjects. The minimum requirement to be an essay writer with our essay writing service is to have a college degree. All our academic writers have a minimum of two years of academic writing. We have a stringent recruitment process to ensure that we get only the most competent essay writers in the industry. We also ensure that the writers are handsomely compensated for their value. The majority of our writers are native English speakers. As such, the fluency of language and grammar is impeccable.
There is a very low likelihood that you won’t like the paper.
Not at all. All papers are written from scratch. There is no way your tutor or instructor will realize that you did not write the paper yourself. In fact, we recommend using our assignment help services for consistent results.
We check all papers for plagiarism before we submit them. We use powerful plagiarism checking software such as SafeAssign, LopesWrite, and Turnitin. We also upload the plagiarism report so that you can review it. We understand that plagiarism is academic suicide. We would not take the risk of submitting plagiarized work and jeopardize your academic journey. Furthermore, we do not sell or use prewritten papers, and each paper is written from scratch.
You determine when you get the paper by setting the deadline when placing the order. All papers are delivered within the deadline. We are well aware that we operate in a time-sensitive industry. As such, we have laid out strategies to ensure that the client receives the paper on time and they never miss the deadline. We understand that papers that are submitted late have some points deducted. We do not want you to miss any points due to late submission. We work on beating deadlines by huge margins in order to ensure that you have ample time to review the paper before you submit it.
We have a privacy and confidentiality policy that guides our work. We NEVER share any customer information with third parties. Noone will ever know that you used our assignment help services. It’s only between you and us. We are bound by our policies to protect the customer’s identity and information. All your information, such as your names, phone number, email, order information, and so on, are protected. We have robust security systems that ensure that your data is protected. Hacking our systems is close to impossible, and it has never happened.
You fill all the paper instructions in the order form. Make sure you include all the helpful materials so that our academic writers can deliver the perfect paper. It will also help to eliminate unnecessary revisions.
Proceed to pay for the paper so that it can be assigned to one of our expert academic writers. The paper subject is matched with the writer’s area of specialization.
You communicate with the writer and know about the progress of the paper. The client can ask the writer for drafts of the paper. The client can upload extra material and include additional instructions from the lecturer. Receive a paper.
The paper is sent to your email and uploaded to your personal account. You also get a plagiarism report attached to your paper.
PLACE THIS ORDER OR A SIMILAR ORDER WITH US TODAY AND GET A PERFECT SCORE!!!
Place an order in 3 easy steps. Takes less than 5 mins.